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A recurrent task in elementary particle physics involves building constituent models for particle families that
can account for the particles’ quantum numbers. We describe a systematic computerized approach to this task
based on artificial intelligence principles, and discuss the output of two implemented programs that find
constituent models of some standard families using additive quantum numbers. We also illustrate the capability
to search for alternative quark models for single exotic particles in terms of the standard quarks. Although
the current programs make use of very limited constraints on models, they serve as a foundation upon
which more elaborate model-building programs can be designed.@S1063-651X~96!11707-4#

PACS number~s!: 07.05.Mh, 12.39.2x, 12.60.2i, 12.90.1b

I. INTRODUCTION

The task of devising a constituent model for a family of
particles recurs in elementary particle physics. The most fa-
miliar examples are quark structures for particle families
such as baryons and mesons.

The constituent model explains existing particles by pos-
tulating their underlying constituents. The model also ex-
plains particle properties by summation or some other com-
binational rule applied to the property values of the
constituents. The constituents should be as few as necessary
and certainly much fewer than the members of the original
family to be explained.

This article proposes an inferential mechanism for the de-
velopment~discovery! of constituent models. We describe
computer programs that can find simple constituent models
and we apply the programs to some familiar particle fami-
lies. Given a group of particlesG described by their quantum
numbers, the programs can postulate hidden constituents,
their properties, and their combinations sufficient to explain
G. The hidden constituents can be postulated from scratch,
but some of them can also be given in the input. In the latter
case, the programs make use of given constituents. If a
simple model cannot be found, the programs consider more
complex models by proposing additional constituents.

This paper will illustrate all these capabilities. We will
show the inference of the standard quark model as well as a
number of alternatives found by our programs: models for
baryons and mesons, and models of quarks and leptons in
terms of rishons. We will illustrate the incremental approach
to model building by feeding a program a sequence of par-
ticle families, one at a time, and using the quarks introduced
for the previous families to construct models for the new
ones. We will also show a construction of the simplest model
of a specified particle in terms of the standard quarks. For
example, we will use two excited particle states~hexaquark
dibaryon and diquonium! to find their simplest models in
terms of known quarks.

A model may propose additional particles in addition to
those provided in the input. We will illustrate this capability

with the prediction ofV2 in the baryon resonance family.
These programs, together with recent work on finding

phenomenological rules of conservation and new quantum
properties@1–3#, illustrate the potential of heuristic search
principles and knowledge representation in artificial intelli-
gence@4#, applied to high energy physics. The scope of com-
puting in high energy physics has been traditionally concen-
trated on the early stages of interpreting accelerator data, and
on numerical and symbolic mathematics~e.g., @5,6#!. The
work we present helps to extend computer systems into the
realm of model building and discovery. The present paper
follows up on a preliminary report to an artificial intelligence
audience@7#. We use additional examples to show various
advantages of the method in physics.

II. TASK FORMULATION

The vast majority of discovery problems cannot be solved
by algorithms that directly lead to the goal. Discoverers ex-
plore possibilities which, from the perspective of eventually
accepted solutions, can be called dead ends because they do
not become parts of those solutions. A search typical of dis-
covery programs is a process of gradual construction and
evaluation of alternative hypotheses and models, which are
generated by exploring alternative decisions at various
choice points. In line with this discovery process, the states
that are reached are tested against the available data, back-
ground theory, and constraints; the states that fail the tests
are abandoned. Some effort is usually made to apply tests as
soon as they become relevant, although some tests will be
applicable only to fully specified hypotheses. By the early
application of tests, the unpromising partial models can be
discarded, so that the overall search is substantially reduced,
which may be crucial in practice. Those partial models
which pass the evaluation are further elaborated and tested so
that eventually some complete solutions may be generated.

This process of search within a problem space~also called
a search space or state space! has been developed in artificial
intelligence into a conceptual tool to enable a unified treat-
ment of problem solving and discovery processes@4,8#.
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At this point, we recommend that the reader look at Table
I for a concrete example that will motivate the next sections
on task formulation and program design. The input particle
family ~strange baryon octet—upper left of the table! will be
the input to our computer programs, which will output
simple constituents~quarks—upper right!, and constituent
models of the particles in terms of these quarks~bottom of
table!.

A. Constituent models

By a constituent model of a particle family we will un-
derstand specification of the following:

1. A setT5$t1 , . . . ,tN% of postulated constituents, repre-
sentingN different constituent types.

2. A set C of admissible macro-objects, each defined
as a bag ~multiset! of constituents fromT. C5$cuc
5@n13t1 , . . . ,nN3tN# and w(n1 , . . . ,nN)%, where thet i
are drawn fromT, the ni are non-negative integers~each
ni states how many copies oft i are in c), and w(c) is a
constraint on admissible bags. For instance, the constraint
S i51
N ni5M states that each bag contains the same number

M of postulated constituents.
3. A setP5$P1 , . . . ,PK% of properties for constituents in

T and macro-objects inC.
4. ~Optionally! A setVi of admissible values that constitu-

ents inT may have, for each propertyPi in P.
5. Specific property values for each postulated constituent

and property,Pi :T→Vi ,i51, . . . ,K. That is, each postu-
lated constituent inT has an admissible property value. Each
pair of constituents inT should differ by at least one property
value.

6. For each propertyPi in P, the relation between the
value ofPi for each macro-objectc in C and the values of
Pi for the constituents ofc from T. In this paper, we use the
additivity principle: For each objectc in C, and all constitu-
entsc1 , . . . ,cM of c from T, Pi(c)5( j51

M Pi(cj ).
7. A mapping from the input particle family onto the set

C of admissible macrostructures. This mapping assigns to
each particle a bag of constituents fromT.

The above specification can lead to different problems of
model construction, depending on what aspects of a constitu-
ent model are given, and what other aspects are to be in-
ferred. For example, our computer programs, to be described
below, can at the same time postulate a set of quark constitu-
entsT ~item 1 above!, the number of quarks that constitute a
given particle~the constraint in item 2!, property values for
each quark~item 5!, and the mapping between particles and
bags of quarks~item 7!. These elements of the model are
derived from the setP of properties~item 3!, from a family
of particles and their property values, from the additivity
principle~item 6!, and~optionally! from the admissible set of
property valuesVi for each propertyPi ~item 4!.

One could devise further model-building tasks by focus-
ing on other properties of the input particles, on alternative
schemes for combining property values~e.g., vector additiv-
ity!, and on other constraints on admissible bags.

B. Search space

The space of constituent models can be represented by the
matrix equation in Fig. 1, in which the contents of matrices
S andP are filled in by a combinatorial search, while the
matrix equality enforces the additivity principle. This repre-
sentation has proved useful to describe the search space and
solution constraints of various model-building tasks in sci-
ence@9#.

The Z matrix contains the initial data, which consist of
the property values of a particle family. The properties~e.g.,

TABLE I. Strange baryon octet~omitting one particle!: Two models generated byGELL-MANN.

Input family Output quarks
Particle Charge I 3 Strangeness Model 1 Model 2

n 0 21/2 0 udd bcc
p 11 11/2 0 uud acc
S2 21 21 21 dds bbc
S0 0 0 21 uds abc
S1 11 11 21 uus aac
J2 21 21/2 22 dss abb
J0 0 1/2 22 uss aab

Output models
Model 1 Model 2

Quark Charge I 3 Strangeness Quark Charge I 3 Strangeness

a(u) 12/3 11/2 0 a 11/3 11/2 22/3
b(d) 21/3 21/2 0 b 22/3 21/2 22/3
c(s) 21/3 0 21 c 11/3 0 11/3

FIG. 1. The search space for constituent models of particles.
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charge, isospin, etc., listed generically asP1 , . . . ,PK) are
represented by the columns ofZ, and the rows describe par-
ticles, depicted generically asP, Q, . . . ,W.

TheS matrix describes how the known particles are made
up of constituents, the latter represented generically asa, b,
c, and so on. For example, an entry of 2 in the rowP and
columnb means that the particleP contains twob constitu-
ents. Every entry inS is a non-negative integer, and further
constraints can be imposed onS. The programs described
below postulate that every particle in a given family contains
the same number of constituents, i.e., the sum of row entries
in S is uniform for every row.

TheP matrix expresses the property values for the con-
stituents in a similar manner as the matrixZ does for the
particles.

In this paper, the additivity principle is an invariable con-
straint on constituent models: the arithmetic product of the
matricesS andP equals the matrixZ.

In all cases theZ entries will be input to our programs
and theS entries are to be filled in subject to constraints,
whereas on different tasks various parts of theP matrix are
given while the remainder are to be filled in. Since the prop-
erty values inZ are rational numbers and the numbers inS
are non-negative integers, the entries inP are also rational.
Furthermore, for fixed matrix dimensions and filled-inS and
Z matrices, the equationSP5Z has in practice a unique
least-squares solution, because most rows ofS will be dis-
tinct ~few or no rows will be linearly dependent!, and the
number of rows~particles! in S will much exceed the number
of columns ~constituents!. Hence, the problem is over-
constrained, thus leading to a unique solution as implied by
an elementary theorem of matrix algebra.~Of course, the
least-squares solution need not imply anexactsolution to the
equationSP5Z.)

The number of rows inP is not known whenever the
constituents need to be hypothesized from scratch; the arrow
notation (→ and↓) signals the dimensions along which the
matrices grow, when new constituents are postulated. This
inferential task is combinatorially the hardest because the
space of open possibilities~the entireS andP matrices! is,
by far, the largest.

A second task involves searching for alternative constitu-
ent models made of known constituents for particles which
are already known to have at least one model. In this case,
the matrixP is already filled in with the properties of known
constituents, and the task only involves searching theS ma-
trix, which makes this combinatorially the simplest task.

A third inferential task involves finding a constituent
model for a particle family, while making use of a given set
of constituents whichmight not be sufficient.In this case,
new constituents may need to be postulated as well. This
incrementalsearch mode arises typically when quarks found
for a previous particle family are the starting point for ex-
plaining a new family. TheP matrix is partially filled in at
the start, but new rows can be added during the search. This
third task is of intermediate combinatorial difficulty.

These three different inferential tasks will be illustrated
below on concrete examples taken from physics practice.

C. The role of simplicity

The search for constituent models ordinarily involves
finding the simplest model or the set of all simplest models.

One measure of simplicity is the number of constituents,
which normally starts at the smallest plausible value and is
incremented as simpler models are rejected. As the number
of constituents increases, both of the matricesS andP in Fig.
1 are successively enlarged along one of their dimensions:
the number of postulated constituents.

A second simplicity parameter is the number of constitu-
ents per particle, e.g., the number of quarks that make up an
elementary particle, which is assumed here to be equal for all
the particles in a family. This parameter is expressed as a
constraint on the rows of the matrixS: the sum of row entries
must equal an integer greater than 1. This second simplicity
parameter is also subject to a search process, which starts
from the value 2 and increments the parameter by 1 as sim-
pler models fail to turn up solutions.

The quantum numbers of elementary particles are often
limited to a small set of fractions and integers. We might
similarly limit the admissible property values for constitu-
ents. If the search for models is constrained to a given set of
admissible values for each property inP, then this constraint
might be considered another simplicity criterion, especially
if the set of admissible values is expanded dynamically
whenever no solutions are found using a smaller set. The
constraint on admissible values reduces the number of pos-
sible P matrices, but this number is still potentially very
large. For three constituents, three properties, and seven pos-
sible values for each property, the number of possible matri-
ces is 7333'43107.

III. COMPUTER PROGRAMS

Next we will describe two computer programs that search
the space of constituent models@18#. Each model is con-
structed gradually. The construction steps correspond to cat-
egories 1–7 in our hidden structure definition in Sec. II A.
Each element of the definition is represented by operators
that build the corresponding part of the model: a number of
constituents are postulated, as are their properties, the com-
binations of constituents into particle structures, and so forth.
Alternative models are constructed by following alternative
paths that are enabled at the various choice points.

A. Search requirements

Since model construction is a gradual process, the search
for hidden structure is actually conducted in the space of
partial models. This is very important for search efficiency
~consider an alternative approach that postulates complete
constituent models out of whole cloth: much material and
time will be wasted before a fit is found!. Partial models are
evaluated as early as possible by the available data and con-
straints, to prevent the further~exponential! elaboration of
failed models.

Another important requirement is that the search not over-
look any solutions. Each possibility must be tried until it is
clear that it cannot be expanded into an acceptable model.
On the other hand, ideally no possibility should be tried more
than once, and isomorphic solutions should be excluded, that
is, solutions that can be mutually mapped by renaming the
constituent types inT. If possible, the model generator
should be isomorph-free, that is, only one model should be
tried in each isomorphism class.
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The search carried out by our computer programs will
start with the simplest models and move to more complex
models only after an exhaustive search in the simpler classes
fails to find any solutions. This strategy is called breadth-first
search. The two main simplicity parameters are the number
N of constituent types~e.g., quarks! and the numberM of
constituents in each structure~quarks per particle!.

B. From structure definition to search strategy

In response to the first item in our model definition, a
program proposes the numberN of constituents to consider.
It starts fromN52, and increases the number by 1 if no
solution has been found for a givenN. In terms of the ma-
trices in Fig. 1, each choice ofN corresponds to a particular
column dimension in matrixS and row dimension in matrix
P. At N5k, wherek is the number of particles in the input
family, many models always exist, including a trivial model,
which is the input family itself. Hence, the search stops after
N reachesk21. If there is ‘‘pattern’’ in the input family,
then one expects to find a model that has much fewer con-
stituents than the trivial model.

The second item calls for creation of all admissible struc-
tures. We use the constraint that requires the same number
M of constituents for every particle in the input family. The
initial value ofM is 2, becauseM51 could only lead to a
trivial model. As is the case withN, M is increased by 1 if
no model is found for a givenM . The constraint thatM is
uniform over the entire input family is admittedlyad hoc.
Looser constraints on structure could be used, or alterna-
tively, a space of constraints, but that could lead to a much
longer search.

For a given numberN of postulated constituents andM
constituents per particle, a formula from elementary combi-
natorics indicates that there are

uCu5SN1M21

M D
different combinations~bags! made up of constituents~du-
plicates are allowed in a bag!. These structural combinations
are the only admissible candidates for the rows in theS
matrix. For example, ifN54, so there are four constituents
a, b, c, andd, and ifM52, then there are 10 possible com-
binations:

~aa ab bb ac bc cc ad bd cd dd!.

If the numberk of particles in the input family is less than

SN1M21

M D ,
~here, 10!, then of course some of these combinations will be
left unused inS.

We can impose further constraints onN andM , given the
size of the input particle family. First,uCu must be no less
than the number of particles in the family, or else some par-
ticles could not be accounted for. Second, if we want to
disallow too many potential combinations in addition to
those which explain thek input particles, thenuCu,3k

seems a reasonable constraint. In conclusion, for a given
N, the numberM has a tight upper and lower limit, namely,
those integers that satisfy

k<SN1M21

M D ,3k.

SinceN,k, only a small finite set ofN,M pairs will pass
those tests.

For a fixed N,M simplicity class, our programs will
search for acceptable models. If none is found, thenM is
incremented preferentially, notN, since it seems more im-
portant to minimize the number of constituents than the num-
ber of constituents per particle.~Of course, one could run the
program under different priority schemes and compare the
results.! If

SN1M21

M D
reaches 3k ~or another such threshold!, then the search
should incrementN and resetM to its minimal value of 2.
After eitherM or N has been incremented, the search for
acceptable models proceeds in the newer, more complex
class.

The constraint of uniformM on admissible structures is
ad hocand many alternative constraints are possible. In the
future we plan to expand the search into the space of con-
straints.

The third item in our model definition, the list of the
constituent properties, is taken directly from the input matrix
Z and forms the column dimension of the matrixP. That is,
the constituent properties exactly parallel the particle family
properties. The task of postulatingnew properties, in con-
trast to new propertyvalues, is not addressed here~but see
@1# and @2,3,10#!. The Z matrix contains only the additive
properties of elementary particles, due to the linear equation.
Other nonadditive properties could be handled within an ex-
panded framework.

The fourth, fifth, and sixth items deal with assigning
quantum numbers~property values! to constituents and test-
ing the assignment by additivity. These steps are handled
differently by the two programs to be described below.

The seventh item involves search in the space of possible
mappings between particles and bags of constituents. Poten-
tially, for k particles mapped tos constituent combinations,

s5SN1M21

M D ,
the number of mappings iss3s213•••3s2k11. To illus-
trate, this number is 3.63106 for the baryon decuplet mod-
eled by three quarks in groups of 3. To reduce the combina-
torial overhead, our programs construct the mappings
incrementally, in parallel with assigning property values to
constituents.

There is a potential for vastly redundant search if isomor-
phic solutions are not excluded. Suppose that the current
simplicity class involves four constituents in groups of two
(N54, M52); let us consider the first assignment of con-
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stituents to a particle, i.e., the first row of theS matrix. One
possible assignment is the pairaa. Another assignmentbb is
equivalent toaa, since botha andb are mere interchangeable
labels at this early stage; they become distinct aftera or b is
assigned a property value, or aftera or b is assigned to the
components of a particle without yet committing to specific
property values. However, the third optionab is not equiva-
lent toaa, since the former does not entail double occurrence
of a constituent. A good structure generator should attend to
such subtleties and not generate redundant possibilities. For
N>2,M52, the only nonredundant mappings at the first as-
signment areaa andab.

Our programs generate isomorph-free constituent models
according to three principles that govern interchangeable la-
bels: ~1! constituents are listed in alphabetic order;~2! no
constituent is skipped;~3! a next constituent~in alphabetic
order! can be listed no more times than the previous constitu-
ent. For example, whenN55 andM54, only the combina-
tions aaaa, aaab, aabb, aabc, andabcd are considered for
the first particle.

Finally, both our programs report all satisfactory simplest
models by carrying out an exhaustive search; they do not
stop at the first model found within a simplicity class. Alter-
natively, the programs can start with user-specified param-
etersN andM .

C. GELL-MANN : Divide-and-conquer and trial-and-error

GELL-MANN, the first program we describe, uses a divide-
and-conquer approach to handle the large combinatorial
space spanned by the unknown entries in matricesS and
P. The search is decomposed into parts that can be solved
separately, then the partial solutions are joined into an over-
all constituent model. Further,GELL-MANN uses trial and er-
ror to find the right property values inP.

The third item in our model, the list of admissible values
for each property, is determined by the quantum numbers of
input particles inZ @7#. For each propertyPi , let v i be the
highest absolute value for thePi column inZ, and letDi be
the set of all denominators among fractional values for the
same column. The listVi of admissible values then consists
of all integers and proper fractions based on denominators in
Di , betweenv i and2v i . For instance, because the maxi-
mum value of strangeness is 2 for the hadron octet and all
values of strangeness are integers~see Table I!, the program
considers the list of valuesVstrange5(2,1,0,21,22). Be-
cause the maximum value of isospin for the hadron octet is
1, and 2 is the denominator in some fractional values,
Visospin5(1,1/2,0,21/2,21). When the program cannot
find a solution for those values, it considers the fractions
based on 1/M. Thus, ifM53, andGELL-MANN cannot find a
model for the charge values 1,0,21, the program eventually
considers the values 1,2/3,1/3,0,21/3,22/3,21.

GELL-MANN’s choice of admissible values has been his-
torically motivated. For instance, initially the integer values
were considered admissible for charge and only reluctantly
have the fractional values of 1/3 and 2/3 been accepted. The
values admissible for strangeness are still integers, while our
programs find also models with values of 1/3 and 2/3.

GELL-MANN decomposes the search for the property val-
ues of constituents by first considering each property sepa-

rately and finding all partial solutions for that property alone.
Clearly, not every partial solution will become part of an
overall solution, soGELL-MANN then tries to unify the partial
solutions by successive merges.

D. YUVAL : Search and equation solving

After GELL-MANN was implemented and applied@7#, a
second program,YUVAL , was written by the first author to
apply the concept of model building as search in matrix
spaces@9#. This concept was used in Sec. II B to characterize
the search space for constituent models. Here we discuss
only the main differences between the two programs.

The newer program does not attempt a divide-and-
conquer approach based on lists of possible property values
inferred from theZ matrix, although both programs search
theS matrix ~recall that the rows ofS correspond to particles
and the columns to constituents!. The search proceeds by
filling in a row at a time~i.e., building up a partial model
S8). WhereasGELL-MANN tests combinations of admissible
values, YUVAL tests whether the matrix equation
S83P5Z8, in which P is the only unknown, is soluble. If
the equation is soluble, thenYUVAL continues its search by
considering a constituent model for the next particle~i.e.,
row in S) remaining to be considered, or stores the solution
if all particles were already considered. If the equation is
insoluble, then the program considers alternative constituent
models for the last row or rows added toS8.

The process of solving the matrix equation yields the de-
sired property values of constituents, that is, theP matrix. Of
course, any calculatedP is not a final solution unless all the
particles in the family were included inS8.

Whenever the rank of the filled-in rows ofS8 equals the
number of columns~i.e., postulated constituents!, and if
S83P5Z8 is soluble, then the constituent property values in
P are unique for thisS8. In such cases, the values inP can
be used to quickly test whether the available quark combina-
tions for the remaining rows~particles! in S are acceptable.
The effect is a very large reduction in the search time on
larger particle families, since typically onlyN rows will need
to be filled in to reach a rank ofN.

YUVAL carries out an exhaustive search of an (N,M ) sim-
plicity class in the sense that, barring program bugs, it misses
no constituent model, even if it involves exotic fractional
values; this feature is its principal advantage. However, em-
pirical comparisons betweenYUVAL and its predecessor
GELL-MAN reveal that the latter is significantly faster due to
its divide-and-conquer strategy and use of small lists of val-
ues.GELL-MANN may be able to tackle some problems that
are beyond the combinatorial ability ofYUVAL , although the
latter program may find models that are outside the scope of
the former.

E. Incremental model construction

Suppose an acceptable constituent model has been found
for one particle family, and a new family of particles pre-
sents itself. One can then use the current constituents to find
a model for the new family, and this echoes the historical
practice in physics.

Our programs can operate in this mode, in which theP
matrix is also an input, by only varyingM during their
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search withinS @7#. If a model cannot be found, then the
programs postulate novel constituents, exactly as described
earlier. In this latter case, the finalP matrix is only partially
filled in at the start.

The two families could be merged at the start so that a
joint model is generated from scratch. This might be unde-
sirable, however, because nonincremental search in both pro-
grams operates under the constraint that the number of con-
stituents per particle be uniform, whereas one might prefer to
allow differentM values for the different particle families.

F. Limitations

In the current programs, a particle’s properties are deter-
mined only by simple summation of the properties of its
constituents. The programs do not take into account quantum
numbers that are added as vectors, for instance, angular mo-
mentum and isospin.

The current framework can be extended to express further
constraints on constituent models or property values. For ex-
ample, suppose that constituents must exist in complemen-
tary pairs, such that constituent quantum numbers are of
equal magnitude but opposite sign to those of its anticon-
stituent. Then theP matrix will have an even number of
rows, and the complementarity can be expressed as a linear
constraint onP. Neither of the above capabilities has been
implemented within our computer programs, although incor-
porating them does not seem problematic.

Lastly, the programs confront a combinatorial explosion
with increases in the numbers of particles, constituents, and
constituents per particle. This explosion should not be seen
as defects of program design, but as inherent to exhaustive
search in combinatorial spaces. Further constraints on mod-
els could reduce the combinatorics, but they may also elimi-
nate interesting solutions from the scope of the search.

IV. APPLICATION TO PARTICLE FAMILIES

GELL-MANN andYUVAL can be viewed as convenient tools
to propose underlying constituent models for various groups
of particles, including particle families. We will now con-
sider various applications of the programs, and highlight es-
pecially the exotic results that differ from the standard
model. The run times for the two programs, both of which
are written in Common Lisp, vary from seconds to overnight
on a workstation.

A. Strange baryon octet

Our first family is commonly referred to as the strange
baryon octet or hadron octet and consists of seven unique
particles. An eighth particle has the same quantum numbers
as one of the seven particles and is not considered here. The
input @11# and the results are summarized in Table I.

The first hypothesis forN andM that leads to at least
seven quark combinations is three quarks in groups of three
(N5M53). GELL-MANN arrived at the two solutions shown
in Table I. The first solution corresponds exactly to the quark
model developed by Gell-Mann. The second model uses
strangeness values that are multiples of 1/3, like the charge
values in the first model.

In each model, three possible quark combinations are in
surplus, i.e., are not assigned to any of the seven particles.
Each of these combinations consists of three identical
quarks, for instance,aaa. These surplus combinations can be
viewed as predictions of the model. The three extra particles
in GELL-MANN’s first solution have properties equal to
baryon resonancesD2, D11, andV2. We could not find
the particles predicted byGELL-MANN’s second solution.

We also used all eight baryons, includingL0, which has
the same properties asS0 (L0 andS0 are thus required to
possess distinct structural models!. GELL-MANN could not
find any solutions in the category (N5M53), but it pro-
duced three quark solutions forN54 andM52, as shown
in Table II. The first model predicts two extra particles. The
properties of one are identical withV2, whereas the other
has a charge of 1, anI 3 value of 0, and a strangeness of 1.

B. Meson octet

According to the standard model, each meson~pion! is
made up of one quark and one antiquark~Table III!. For
most properties, including chargeq, strangenessS, and iso-
spin I 3, the value of the antiquark is opposite in sign but
equal in magnitude to the corresponding quark.

Surprisingly, for the meson family@12,13# GELL-MANN

found a single solution for just four quarks in groups of two,
presented as the first model in Table III. It can be interpreted
as two quarks~ a and b! and their two antiquarks (a and
b). None of these quarks is recognized in physics. This
model predicts the particlesbb (q51, I 350, S52) andbb
(q521, I 350, S522).

YUVAL found two additional models of four quarks in
groups of two~models 2 and 3 in Table III!. These also
consist of two quarks and their antiquarks, but the magni-
tudes ofI 3 are 1/4 and 3/4. Both of these models also predict
two extra particles~ bb andbb in model 2, andaa andaa in
model 3!.

When we removed mesonh ~input identical top0), GELL-
MANN discovered two models (N5M53) analogous to the
models discovered for seven baryons~add 1/3 to the strange-
ness value of each quark in Table I!.

In the absence of additional constraints on quark models,
it would be difficult forGELL-MANN or YUVAL to discover the
standard six-quark model for mesons, for the following rea-
son. When we forcedGELL-MANN to search for five-quark
models~instead of the simplest models!, the program found
hundreds of solutions withM52, and it would find many
more six-quark models. This result illustrates the underdeter-
mination of models by observational data that occurs when
additional hidden objects are permitted beyond the available
minimum. Even if the standard six-quark model

TABLE II. Constituent models for all eight baryons.

Quark Model 1 Model 2 Model 3

Q I3 S Q I3 S Q I3 S
a 1/2 1/2 21/2 1/2 1/4 0 1 3/4 0
b 1/2 0 1/2 21/2 23/4 0 0 21/4 0
c 21/2 21/2 21/2 21/2 21/4 21 21 23/4 21
d 21/2 0 23/2 1/2 3/4 21 0 1/4 21
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could be generated, it would be one of many, so there would
be no grounds to claim that it had been discovered. However,
next we will show that the standard model for mesons can be
discovered by incremental model building.

C. Incremental search: Baryons followed by mesons

As already stated, our programs can consider particle
families incrementally, such that the constituents developed
for one family become a starting point for a second family.
When GELL-MANN is run on the baryon octet, it finds two
models involving three quarks, which were presented in
Table I. ThenGELL-MANN is given the meson octet as the
next input. The program tries to use the three quarks from
model 1 ~Table I! to explain the mesons, but fails. As a
result,GELL-MANN postulates a new~fourth! quark, but still
fails to find an acceptable model, so it introduces a fifth
quark, and then a sixth quark. With these six quarks, three
old and three new,GELL-MANN finds two models, including
the standard model of three quarks and three antiquarks.~Ac-
tually, the number of models is larger because each of the
mesonsp0 andh can be explained by three pairs of quark-
antiquark made from the same quarks.! When GELL-MANN

begins with model 2~Table I!, it again augments it with three
new quarks, resulting in two models of six quarks in combi-
nations of two.

YUVAL followed a slightly different path. It tried models
for N55, M53, which GELL-MANN skipped because the
number of candidate particles, that is, 35, exceeded three
times the number of input particles. Starting with either
model 1 or model 2,YUVAL found 42 extended models,
many of them using different combinations of the same
quarks to represent mesonsp0 andh.

If one imposes a further constraint, that the quarks come
in complementary pairs, then six quarks are needed.YUVAL

then finds a unique set of quark-antiquarks for each of the
two original baryon models, which of course includes the
standard model.

D. Baryon resonance family

For the decuplet of baryon resonances, both programs find
only the standard model of three quarks in combinations of
three. The second model~with fractional strangeness of 1/3
and 2/3! for the baryon octet, which was expandable to the
meson octet, cannot by itself explain the full decuplet of
baryon resonances.

E. Rishons

Harari @14# and Shupe@16# postulated a hidden layer of
structure beneath the four quarksu, ū, d, d̄ and four leptons
e2, e1, {e , {̄e . Harari called them rishons while Shupe
named them quips. The only additive property used in both
models is charge. Both models postulate two subquarks~of 0
and 1/3 charge!, and their two antiparticles. Our programs
found N53, M53 models and verified that no simpler
structures exist for the quarks and leptons. It turns out that
three distinct sets of three subquarks possessing the charge

TABLE IV. Subquark constituent model.

Quark Charge I 3 Strangeness Charm Model

d 21/3 21/2 0 0 vwx
u 2/3 1/2 0 0 vvy
s 21/3 0 21 0 wzz
c 2/3 0 0 1 vvz

d̄ 1/3 1/2 0 0 vyz

ū 22/3 21/2 0 0 wxz
s̄ 21/3 0 1 0 xyz
c̄ 22/3 0 0 21 wxy
v 1/3 0 0 1/3
w 21/3 0 21 22/3
x 21/3 21/2 1 1/3
y 0 1/2 0 22/3
z 0 0 0 1/3

TABLE III. Meson octet: Three models generated byGELL-MANN.

Input family Output models
Particle Charge I 3 Strangeness Standard model Model 1 Model 2 Model 3

p1 11 11 0 ud aa ab ab

p2 21 21 0 ud aa ab ab
p0 0 0 0 uu dd ss aa aa aa
K1 11 11/2 11 us ab aa ab
K0 0 21/2 11 ds ba ab bb

K̄0 0 11/2 21 us ab ba bb

K2 21 21/2 21 ds ab aa ba
h 0 0 0 uu dd ss bb bb bb

Output quarks

Model 1 Model 2 Model 3
Quark Charge I 3 Strangeness Charge I 3 Strangeness Charge I 3 Strangeness

a 11/2 11/2 0 11/2 11/4 11/2 11 13/4 11/2
b 11/2 0 1 11/2 13/4 21/2 0 11/4 21/2

a 21/2 21/2 0 21/2 21/4 21/2 21 23/4 21/2

b 21/2 0 21 21/2 23/4 11/2 0 21/4 11/2
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values~21/3, 0, 1/3!, ~21/3, 0, 2/3!, and~22/3, 0, 1/3!, can
be arranged in 12 structural models. When one uses the prop-
erty I3 in addition to charge, the programs find the simplest
models atN54, M53, all involving the unusual charge de-
nominator of 9. A search atN54, M54 turned up 407
models. None of these models consisted of rishon-antirishon
pairs.

F. Other subquark models

We ran YUVAL on the set of quarks shown in the first
eight rows of Table IV. The program failed to find any con-
stituent models for four subquark constituents, despite allow-
ing models having as many as six constituents per quark.
However, when five constituents were allowed, the program
did find 40 different models having three constituents per
quark~a smallerM did not turn up any models!. From these
40 models, the last five rows of Table IV show one of the
four models~v, w, x, y, z! that involve no denominator larger
than 3. None of the 40 models involved strictly constituent-
anticonstituent pairs.

G. Models of individual particles using standard quarks

As final examples, we appliedYUVAL to the task of find-
ing constituent models of individual particles~or various of
their excited states!, while drawing on the standard quarks,
and not postulating further constituents. In the notation of
Fig. 1,P andZ are given, and onlyS is to be filled in. As
examples, we consider the cases of the exotic particles
hexaquark dibaryon@15# and diquonium states@17#.

The first example~the hexaquark dibaryon! has the prop-
erties of zero charge, a baryon number of 2, strangeness of
22, and has a proposed quark structureudsuds@15#. The
program was given this particle as a singleton particle family
~theZ matrix!, together with the six quarksu, d, s and their
antiquarks, with the standard quantum numbers of charge,
baryon number, and strangeness. The program confirmed
that the six-quark modeludsudswas the simplest, in the
sense of requiring the fewest number~zero! of new constitu-
ents, and the fewest number of constituents per particle.
Moreover, the six-quark model was alone in its simplicity
class ofM56.

Our second example consists of the four exotic particles
~diquonium states! labeledD1–D4 in Table V. Drawing on
the standard quarks, the program finds four different quark
models which differ only in their assignment to two of the
particles~last column of Table V!. The two models each for
D2 andD3 are recognized as mixed states for these two
particles@19#.

In both examples,YUVAL ruled out the possibility of al-
ternative quark models, which seems difficult to guarantee
without an exhaustive computerized search.

V. CONCLUSION

This paper has analyzed the task of postulating constituent
models for particle families, and has described two sepa-
rately developed computer programs capable of performing
the task. We have used these programs to infer constituent
models for the baryon and several other families, for quarks,
and for individual exotic particles. In some cases, the pro-
grams detected several alternative models, in addition to the
standard model, that might be of potential interest in the
phenomenology of elementary particles.

The approach may also be useful to explore subquark
models and models for exotic particles in terms of the stan-
dard quarks, as was done on the hexaquark dibaryon and
diquonium states. In principle, the same approach works on
‘‘particles’’ at both higher and lower levels of aggregation
than elementary particles and quarks, as long as additive
properties are involved. For example, one could describe the
large spectrum of atomic nuclei in terms of proton and neu-
tron constituents. The same approach as used for a dibaryon
would work on any single nucleus. However, the constraint
on equal number of constituents might lead to strange results
in the case of several joint nuclei.

From the physics perspective, probably the most signifi-
cant result is that an exhaustive search in the space of quark
models for the baryons followed by the mesons~Sec. IV C!
reveals that the standard quark model stands out nearly
uniquely as the simplest, when the constraint of complemen-
tary pairs is imposed. It would be difficult to arrive at such
conclusions without the aid of the computer. Finally, we
have laid a foundation for future discovery tools that can
take account of a wider array of constraints and background
theory than was addressed here.
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TABLE V. Quark models of four diquonium states.

Particle Baryon number Charge ~Total! Isospin Strangeness Models

D1 0 1 3/2 21 usdd
D2 0 0 3/2 21 dsdd or usud
D3 0 21 3/2 21 dsud or usuu
D4 0 22 3/2 21 dsuu
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